Use of Statistical and Neural Net Approaches in Predicting Toxicity of Chemicals

نویسندگان

  • Subhash C. Basak
  • Gregory D. Grunwald
  • Brian D. Gute
  • Krishnan Balasubramanian
  • David W. Opitz
چکیده

Hierarchical quantitative structure-activity relationships (H-QSAR) have been developed as a new approach in constructing models for estimating physicochemical, biomedicinal, and toxicological properties of interest. This approach uses increasingly more complex molecular descriptors in a graduated approach to model building. In this study, statistical and neural network methods have been applied to the development of H-QSAR models for estimating the acute aquatic toxicity (LC50) of 69 benzene derivatives to Pimephales promelas (fathead minnow). Topostructural, topochemical, geometrical, and quantum chemical indices were used as the four levels of the hierarchical method. It is clear from both the statistical and neural network models that topostructural indices alone cannot adequately model this set of congeneric chemicals. Not surprisingly, topochemical indices greatly increase the predictive power of both statistical and neural network models. Quantum chemical indices also add significantly to the modeling of this set of acute aquatic toxicity data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Use of Statistical and Neural Net Methods in Predicting Toxicity of Chemicals: A Hierarchical QSAR Approach

A contemporary trend in computational toxicology is the prediction of toxicity endpoints and toxic modes of action of chemicals from parameters that can be calculated directly from their molecular structure. Topological, geometrical, substructural, and quantum chemical parameters fall into this category. We have been involved in the development of a new hierarchical quantitative structure-activ...

متن کامل

Predicting arsenic and heavy metals contamination in groundwater resources of Ghahavand plain based on an artificial neural network optimized by imperialist competitive algorithm

Background: The effects of trace elements on human health and the environment gives importance to the analysis of heavy metals contamination in environmental samples and, more particularly, human food sources. Therefore, the current study aimed to predict arsenic and heavy metals (Cu, Pb, and Zn) contamination in the groundwater resources of Ghahavand Plain based on an artificial neural network...

متن کامل

A Recommendation for Net Undercount Estimation in Iran Population and Dwelling Censuses

Census counts are subject to different types of nonsampling errors. One of these main errors is coverage error. Undercount and overcount are two types of coverage error. Undercount usually occurs more than the other, thus net undercount estimation is important. There are various methods for estimating the coverage error in censuses. One of these methods is dual system (DS) that usually uses dat...

متن کامل

DIFFERENT NEURAL NETWORKS AND MODAL TREE METHOD FOR PREDICTING ULTIMATE BEARING CAPACITY OF PILES

The prediction of the ultimate bearing capacity of the pile under axial load is one of the important issues for many researches in the field of geotechnical engineering. In recent years, the use of computational intelligence techniques such as different methods of artificial neural network has been developed in terms of physical and numerical modeling aspects. In this study, a database of 100 p...

متن کامل

Toxicity comparison of silver nanoparticles synthesized by physical and chemical methods to tadpole (Rana ridibunda)

One of the possible threats in increasing use of nanomaterials is the emergence of toxicity in humans and other animals which is discussed in nanotoxicology. In addition to toxic effects of nanomaterials themselves, different chemical precursors which are usually used in bottom-up approaches for production of nanomaterials may have secondary toxic effects in living organisms. In contrast, less ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of chemical information and computer sciences

دوره 40 4  شماره 

صفحات  -

تاریخ انتشار 2000